Master Inverse Trigonometric Functions (Class 12 Maths Chapter 2) – Formulas, NCERT Solutions & CBSE PYQs

Chapter 2: Inverse Trigonometric Functions (Class 12 CBSE Math)

✅ A. Key Concepts & Formulas

  1. Definition & Principal Values
    Inverse trig functions are the restricted inverses of trig functions:

    • sin1x\sin^{-1} x: domain x[1,1]x \in [-1,1]; range [π/2,π/2][-π/2, π/2]

    • cos1x\cos^{-1} x: domain [1,1][-1,1]; range [0,π][0, π]

    • tan1x\tan^{-1} x: domain all real; range (π/2,π/2)(-π/2, π/2)

    • Similar definitions apply for cot1,sec1,csc1\cot^{-1}, \sec^{-1}, \csc^{-1} .

  2. Properties & Identities

    • Odd–even behavior: sin1(x)=sin1x\sin^{-1}(-x)=-\sin^{-1}x, cos1(x)=πcos1x\cos^{-1}(-x)=π-\cos^{-1}x, etc.

    • Complementary relations: sin1x+cos1x=π/2\sin^{-1}x + \cos^{-1}x = π/2; tan1x+cot1x=π/2\tan^{-1}x + \cot^{-1}x = π/2.

    • Reciprocal links: sin1(1/a)=csc1(a)\sin^{-1}(1/a) = \csc^{-1}(a) for a1|a|≥1, etc.

  3. Composite Expressions
    Use algebraic identities and angle-sum formulas to simplify complex arctrig expressions:

    • 2tan1x=tan1(2x1x2)2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) (for x<1|x|<1)

    • tan1x+tan1y=tan1(x+y1xy)\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1 - xy}\right) (if xy<1xy<1) .

  4. Graphs

    • sin1x\sin^{-1}x: increasing from [1,1][-1,1] to [π/2,π/2][-π/2, π/2].

    • cos1x\cos^{-1}x: decreasing from [1,1][-1,1] to [π,0][π, 0] .


✅ B. NCERT Exercises – Quick Overview

  • Ex 2.1: Domain, range, principal values.

  • Ex 2.2: Prove identities of form sin1(sinx)=...\sin^{-1}(\sin x) = ....

  • Ex 2.3: Simplify algebraic combinations of inverse trigs.

  • Ex 2.4: Solve equations involving inverse trigs.

Detailed solutions are available via Teachoo and MathonGo.


✅ C. CBSE PYQs + Best-Scoring Responses

Below are top-scoring answers to major board questions:

🔸 PYQ 2023

Q: cos1(3/2)+cos1(1/2)\cos^{-1}(\sqrt{3}/2)+\cos^{-1}(-1/2)
A: Use principal values: cos1(3/2)=π/6\cos^{-1}(\sqrt{3}/2)=π/6, cos1(1/2)=2π/3\cos^{-1}(-1/2)=2π/3 → Sum = 5π/6\boxed{5π/6} .

🔸 PYQ 2021

Q: tan1(1)+tan1(2)+tan1(3)=?\tan^{-1}(1)+\tan^{-1}(2)+\tan^{-1}(3)= ?
A: Combine stepwise using sum formulas → result = π\boxed{π} .

🔸 PYQ 2020

Q: Solve 2tan1(cosx)=tan1(2cscx)2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x).
A: Use relation 2tan1y=tan1(2y1y2)2\tan^{-1}y = \tan^{-1}(\frac{2y}{1-y^2}), substitute cosx\cos x, simplify gives solutions x=0,π/4x=0,π/4 .

🔸 PYQ 2019

Q: Prove tan1(1/5)+tan1(1/7)+tan1(1/3)+tan1(1/8)=π/4\tan^{-1}(1/5)+\tan^{-1}(1/7)+\tan^{-1}(1/3)+\tan^{-1}(1/8)=π/4.
A: Group and apply addition formulas in stages using arctan sum rules .


#Tags (comma-separated):

#Class12Maths, #InverseTrigonometry, #NCERTSolutions, #CBSEPYQ, #TrigIdentities, #EducationBlog, #MathsPrep, #Chapter2Maths, #BoardExamPrep


Comments

Popular posts from this blog

Rise of Nationalism in Europe – Class 10 CBSE Detailed Notes | Chapter 1 History

Nationalism in India – Class 10 CBSE History Notes | Chapter 2 | Key Events, Movements & Leaders

Resources and Development – Class 10 Geography Notes, Concepts, and Map Work