Master Integrals – Class 12 Maths Chapter 7 | Indefinite & Definite Integrals, Techniques & CBSE PYQs
Here’s the comprehensive guide for Chapter 7: Integrals from Class 12 CBSE Maths: 🧠A. Key Concepts & Properties Indefinite Integrals ∫ f ( x ) d x = F ( x ) + C \int f(x)\,dx = F(x) + C Basic rules: ∫ x n d x = x n + 1 n + 1 + C \int x^n dx = \frac{x^{n+1}}{n+1} + C ∫ e x d x = e x + C \int e^x dx = e^x + C , ∫ sin x d x = − cos x + C \int \sin x\,dx = -\cos x + C , etc. Integration Techniques Substitution : Let u = g ( x ) u = g(x) , then ∫ f ′ ( g ( x ) ) g ′ ( x ) d x = ∫ f ′ ( u ) d u \int f'(g(x))g'(x)dx = \int f'(u)du . Integration by Parts : ∫ u d v = u v − ∫ v d u \int u\,dv = uv - \int v\,du Ideal for polynomial×log/trig. Definite Integrals & Fundamental Theorem ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x)\,dx = F(b) - F(a) Properties: ∫ a a = 0 \int_a^a = 0 , ∫ a b = − ∫ b a \int_a^b = -\int_b^a ∫ a b [ f + g ] = ∫ a b f + ∫ a b g \int_a^b [f+g] = \int_a^b f + \int_a^b g ∫ a b f ( x ) ...