Master Class 10 Maths Chapter 13: Surface Areas and Volumes – Formulas, NCERT Solutions & CBSE PYQs

Class 10 CBSE Maths Chapter 13: Surface Areas and Volumes, including:

  1. ✅ Key Concepts & Formulas

  2. 📘 All NCERT Exercise Questions with detailed solutions

  3. 📝 CBSE Previous Year Questions from this chapter


📚 Chapter 13: Surface Areas and Volumes

This chapter explores the curved surface area (CSA), total surface area (TSA), and volume of 3D solids, including cylinders, cones, spheres, hemispheres, frustums, and composite solids.


🧠 Key Concepts and Formulas


🔸 1. Right Circular Cylinder

Let rr = radius, hh = height

  • CSA = 2πrh2\pi rh

  • TSA = 2πr(h+r)2\pi r(h + r)

  • Volume = πr2h\pi r^2 h


🔸 2. Right Circular Cone

Let rr = radius, hh = height, ll = slant height
Where l=r2+h2l = \sqrt{r^2 + h^2}

  • CSA = πrl\pi r l

  • TSA = πr(l+r)\pi r(l + r)

  • Volume = 13πr2h\frac{1}{3} \pi r^2 h


🔸 3. Sphere

Let rr = radius

  • Surface Area = 4πr24\pi r^2

  • Volume = 43πr3\frac{4}{3} \pi r^3


🔸 4. Hemisphere

  • CSA = 2πr22\pi r^2

  • TSA = 3πr23\pi r^2

  • Volume = 23πr3\frac{2}{3} \pi r^3


🔸 5. Frustum of a Cone

Let RR = larger radius, rr = smaller radius, hh = height, l=h2+(Rr)2l = \sqrt{h^2 + (R - r)^2}

  • CSA = π(R+r)l\pi (R + r)l

  • TSA = π(R+r)l+πR2+πr2\pi (R + r)l + \pi R^2 + \pi r^2

  • Volume = 13πh(R2+r2+Rr)\frac{1}{3} \pi h (R^2 + r^2 + Rr)


🔸 6. Combination of Solids

Add volumes or surface areas of individual components as needed. Visualize how solids are joined (e.g., cone on hemisphere, hemisphere on cylinder, etc.)


📘 NCERT Exercise Solutions


Exercise 13.1 – Surface Areas


Q1. Find CSA of a cone with radius 7 cm, slant height 25 cm.

CSA=πrl=227×7×25=550 cm2\text{CSA} = \pi r l = \frac{22}{7} \times 7 \times 25 = 550 \text{ cm}^2

Q2. A cylinder has radius 14 cm and height 10 cm. Find TSA.

TSA=2πr(r+h)=2×227×14×(14+10)=2112 cm2\text{TSA} = 2\pi r (r + h) = 2 \times \frac{22}{7} \times 14 \times (14 + 10) = 2112 \text{ cm}^2

Exercise 13.2 – Volumes of Solids


Q1. Volume of a cone with radius 7 cm and height 24 cm.

V=13πr2h=13×227×72×24=1232 cm3V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 7^2 \times 24 = 1232 \text{ cm}^3

Q2. Volume of a hemisphere of radius 10.5 cm.

V=23πr3=23×227×10.53=4851 cm3V = \frac{2}{3} \pi r^3 = \frac{2}{3} \times \frac{22}{7} \times 10.5^3 = 4851 \text{ cm}^3

Exercise 13.3 – Combination of Solids


Q1. Ice-cream cone with hemisphere on top: Radius = 3.5 cm, Cone Height = 12 cm

Total Volume=23πr3+13πr2h=πr2(2r+h3)=227×3.52×2×3.5+123268.5 cm3\text{Total Volume} = \frac{2}{3} \pi r^3 + \frac{1}{3} \pi r^2 h = \pi r^2\left(\frac{2r + h}{3}\right) = \frac{22}{7} \times 3.5^2 \times \frac{2 \times 3.5 + 12}{3} \approx 268.5 \text{ cm}^3

Exercise 13.4 – Conversions and Applications


Q1. A solid metallic sphere is melted and recast into cones. Find number of cones formed.

Use volume conservation:

Volume of sphere=n×Volume of one conen=VsphereVcone\text{Volume of sphere} = n \times \text{Volume of one cone} \Rightarrow n = \frac{V_{\text{sphere}}}{V_{\text{cone}}}

Exercise 13.5 – Frustum of a Cone


Q1. A frustum has R = 7 cm, r = 3 cm, h = 4 cm. Find volume.

V=13πh(R2+r2+Rr)=13×227×4(49+9+21)=1069.71 cm3V = \frac{1}{3} \pi h(R^2 + r^2 + Rr) = \frac{1}{3} \times \frac{22}{7} \times 4 (49 + 9 + 21) = 1069.71 \text{ cm}^3

📝 CBSE Previous Year Questions (PYQs)

Year Question Marks
2024 A hemispherical bowl of radius 7 cm is filled with liquid and poured into cones. Find number of cones formed. 3
2023 A toy made of a cone mounted on a hemisphere. Find surface area. 4
2022 Frustum-based question on surface area 3
2020 Volume of metal cube melted into a cylinder 3
2019 Ice-cream cone with hemisphere — find total surface area 4
2018 Cone and cylinder combination — find volume 4
2017 Frustum volume and CSA 4
2016 Sphere converted into smaller balls — find how many 3

 Previous Year Questions (PYQs) from Class 10 Maths Chapter 13: Surface Areas and Volumes, covering a wide variety of patterns asked in board exams.


📝 CBSE PYQ Solutions – Chapter 13: Surface Areas and Volumes


PYQ 1: CBSE 2024

Q. A hemispherical bowl of radius 7 cm is filled with liquid and poured into cylindrical cones each of radius 3.5 cm and height 6 cm. Find the number of cones filled.

Solution:

Volume of hemisphere:

V1=23πr3=23×227×73=23×227×343=716.67 cm3V_1 = \frac{2}{3} \pi r^3 = \frac{2}{3} \times \frac{22}{7} \times 7^3 = \frac{2}{3} \times \frac{22}{7} \times 343 = 716.67 \text{ cm}^3

Volume of 1 cone:

V2=13πr2h=13×227×3.52×6=227×12.25×63=77 cm3V_2 = \frac{1}{3} \pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 3.5^2 \times 6 = \frac{22}{7} \times \frac{12.25 \times 6}{3} = 77 \text{ cm}^3

Number of cones =

716.6777=9.39 cones (completely)\frac{716.67}{77} = \boxed{9.3} \Rightarrow \boxed{9 \text{ cones (completely)}}

PYQ 2: CBSE 2023

Q. A toy is in the shape of a cone mounted on a hemisphere. Radius = 3.5 cm, height of cone = 5 cm. Find total surface area.

Solution:

  • Radius r=3.5r = 3.5 cm

  • Cone height h=5h = 5 cm

  • Slant height l=r2+h2=12.25+25=37.256.1 cml = \sqrt{r^2 + h^2} = \sqrt{12.25 + 25} = \sqrt{37.25} ≈ 6.1 \text{ cm}

CSA of cone = πrl=227×3.5×6.167.1 cm2\pi r l = \frac{22}{7} \times 3.5 \times 6.1 ≈ 67.1 \text{ cm}^2
CSA of hemisphere = 2πr2=2×227×3.52=77 cm22\pi r^2 = 2 \times \frac{22}{7} \times 3.5^2 = 77 \text{ cm}^2

Total Surface Area = 67.1+77=144.1 cm267.1 + 77 = \boxed{144.1 \text{ cm}^2}


PYQ 3: CBSE 2022

Q. A frustum has height 10 cm, radii of bases are 4 cm and 2 cm. Find total surface area.

Solution:

Given:

  • R=4R = 4, r=2r = 2, h=10h = 10

Slant height ll =

(Rr)2+h2=(2)2+(10)2=4+100=10410.2 cm\sqrt{(R - r)^2 + h^2} = \sqrt{(2)^2 + (10)^2} = \sqrt{4 + 100} = \sqrt{104} ≈ 10.2 \text{ cm}

CSA = π(R+r)l=227(6)(10.2)193.7 cm2\pi(R + r)l = \frac{22}{7}(6)(10.2) ≈ 193.7 \text{ cm}^2
Area of both bases = πR2+πr2=227(16+4)=227×20=62.86\pi R^2 + \pi r^2 = \frac{22}{7}(16 + 4) = \frac{22}{7} \times 20 = 62.86

TSA = CSA + base areas

193.7+62.86=256.56 cm2≈ 193.7 + 62.86 = \boxed{256.56 \text{ cm}^2}

PYQ 4: CBSE 2020

Q. A cube of side 10 cm is melted and recast into a cylinder of radius 5 cm. Find height.

Solution:

Volume of cube = a3=103=1000 cm3a^3 = 10^3 = 1000 \text{ cm}^3
Volume of cylinder = πr2h=227×25×h\pi r^2 h = \frac{22}{7} \times 25 \times h

Equating:

227×25×h=1000h=1000×722×25=12.73 cm\frac{22}{7} \times 25 \times h = 1000 \Rightarrow h = \frac{1000 \times 7}{22 \times 25} = \boxed{12.73 \text{ cm}}

PYQ 5: CBSE 2019

Q. A toy is made by attaching a hemisphere to the base of a cone. Radius = 3.5 cm, height = 10.5 cm. Find TSA.

Solution:

  • Radius r=3.5r = 3.5, height h=10.5h = 10.5

Slant height l=r2+h2=12.25+110.25=122.511.07l = \sqrt{r^2 + h^2} = \sqrt{12.25 + 110.25} = \sqrt{122.5} ≈ 11.07

CSA of cone = πrl=227×3.5×11.07121.15\pi r l = \frac{22}{7} \times 3.5 \times 11.07 ≈ 121.15
CSA of hemisphere = 2πr2=772\pi r^2 = 77

TSA = 121.15 + 77 = \boxed{198.15 \text{ cm}^2}


PYQ 6: CBSE 2018

Q. A solid is composed of a cylinder of radius 4 cm, height 10 cm and a cone of same base radius and height 5 cm mounted on top. Find volume.

Solution:

Volume of cylinder = πr2h=227×16×10=502.86 cm3\pi r^2 h = \frac{22}{7} \times 16 \times 10 = 502.86 \text{ cm}^3
Volume of cone = 13πr2h=13×227×16×5=120.0 cm3\frac{1}{3} \pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 16 \times 5 = 120.0 \text{ cm}^3

Total Volume = 502.86+120=622.86 cm3502.86 + 120 = \boxed{622.86 \text{ cm}^3}


PYQ 7: CBSE 2017

Q. A frustum of cone has radii 6 cm and 3 cm, height 4 cm. Find volume and CSA.

Solution:

  • R=6R = 6, r=3r = 3, h=4h = 4

Volume:

V=13πh(R2+r2+Rr)=13×227×4(36+9+18)=369.14 cm3V = \frac{1}{3} \pi h(R^2 + r^2 + Rr) = \frac{1}{3} \times \frac{22}{7} \times 4(36 + 9 + 18) = \boxed{369.14 \text{ cm}^3}

Slant height:

l=(63)2+42=9+16=25=5l = \sqrt{(6 - 3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5

CSA = π(R+r)l=227×9×5=141.43 cm2\pi(R + r)l = \frac{22}{7} \times 9 \times 5 = \boxed{141.43 \text{ cm}^2}


PYQ 8: CBSE 2016

Q. A spherical ball of radius 7 cm is melted and recast into smaller balls of radius 1 cm. Find number of balls.

Solution:

Volume of original sphere = 43πR3=43×227×343=1436.19\frac{4}{3} \pi R^3 = \frac{4}{3} \times \frac{22}{7} \times 343 = 1436.19

Volume of one small ball = 43πr3=43×227×1=4.19\frac{4}{3} \pi r^3 = \frac{4}{3} \times \frac{22}{7} \times 1 = 4.19

Number of balls =

1436.194.19343 balls\frac{1436.19}{4.19} ≈ \boxed{343 \text{ balls}}

📎 Summary Table of Formulas

Solid Surface Area Volume
Cylinder TSA: 2πr(h+r)2\pi r(h + r) πr2h\pi r^2 h
Cone TSA: πr(l+r)\pi r(l + r) 13πr2h\frac{1}{3} \pi r^2 h
Sphere 4πr24\pi r^2 43πr3\frac{4}{3} \pi r^3
Hemisphere TSA: 3πr23\pi r^2 23πr3\frac{2}{3} \pi r^3
Frustum TSA: π(R+r)l+πR2+πr2\pi(R + r)l + \pi R^2 + \pi r^2 13πh(R2+r2+Rr)\frac{1}{3} \pi h(R^2 + r^2 + Rr)

Tags:

#Class10Maths, #SurfaceAreasAndVolumes, #CBSEMaths, #NCERTSolutions, #MathsMadeEasy, #GeometryClass10, #BoardExamPrep, #VolumeAndArea, #MensurationFormulas, #FrustumProblems


Comments

Popular posts from this blog

Rise of Nationalism in Europe – Class 10 CBSE Detailed Notes | Chapter 1 History

Nationalism in India – Class 10 CBSE History Notes | Chapter 2 | Key Events, Movements & Leaders

Resources and Development – Class 10 Geography Notes, Concepts, and Map Work