Class 12 Maths Chapter 4: Determinants – Properties, NCERT Solutions & CBSE PYQs

 Here’s your comprehensive guide for Chapter 4: Determinants (Class 12 CBSE Maths), covering:


🧠 A. Key Concepts & Properties

1. What Is a Determinant?

  • Assigns a scalar value to a square matrix.

  • For 1×11 \times 1: [a]=a|[a]| = a;

  • For 2×22 \times 2, abcd=adbc\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc;

  • For 3×33 \times 3, use expansion by minors and cofactors. 


2. Properties of Determinants

(Useful for simplifying evaluations) :

  1. Transpose Invariance: A=AT|A| = |A^T|

  2. Sign Swap: Swapping two rows flips the sign

  3. Zero/Equal Row: Any row (or column) of zeros or two identical rows ⇒ A=0|A| = 0

  4. Scalar Factor: Multiplying a row by kk scales A|A| by kk

  5. Linearity: Split row entries into sums to split determinant

  6. Triangular Matrix: Determinant equals product of diagonal entries


3. Minors, Cofactors & Expansion

  • Minor MijM_{ij}: Determinant obtained by deleting row ii and column jj.

  • Cofactor Aij=(1)i+jMijA_{ij} = (-1)^{i+j} M_{ij}.

  • Determinant via cofactor expansion: jaijAij\sum_j a_{ij} A_{ij}


4. Applications

  • Area of a Triangle with coordinates (x1,y1),(x2,y2),(x3,y3)(x_1,y_1), (x_2,y_2), (x_3,y_3):

  • Adjoint and Inverse of a matrix develop using cofactors.


📘 B. NCERT Exercise Solutions Overview

Exercise Topics Covered
4.1 – 4.2 Determinant evaluation (1×1, 2×2, 3×3)
4.3 Minor/cofactor methods, expansion
4.4 – 4.5 Properties and solving equations
4.6 Adjoint and inverse calculations
4.7 Applications: triangle area, linear equations

(Complete worked solutions are available via Cuemath, Teachoo, Mathongo) 


📝 C. CBSE PYQs with Model Answers


PYQ 2019 (All India)

Q: If A=(0102)A = \begin{pmatrix}0 & -1\\0 & 2\end{pmatrix}, B=(3500)B = \begin{pmatrix}3 & 5\\0 & 0\end{pmatrix}, find AB|AB|.
Solution:

AB=0\Rightarrow |AB| = 0. Demonstrates that a zero row/column ⇒ zero determinant (Property).


PYQ 2018 (Delhi)

Q: If AA is skew-symmetric and A=(0a3201b10)A = \begin{pmatrix}0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0\end{pmatrix}, find a,ba, b.
Solution:
Skew-symmetric ⇒ AT=AA^T = -A: equate entries → a=2a = -2, b=1b = -1


PYQ 2016 (All India)

Q: Given A=P+QA = P + Q, where PP is symmetric & QQ skew-symmetric, find PP for A=(3579)A = \begin{pmatrix}3 & 5\\7 & 9\end{pmatrix}.
Solution:

P=A+AT2=(3669)P = \frac{A + A^T}{2} = \begin{pmatrix}3 & 6\\6 & 9\end{pmatrix}

PYQ 2017 (All India)

Q: Prove that det(1xx2x21xxx21)=(1x3)2\det \begin{pmatrix}1 & x & x^2\\ x^2 & 1 & x\\ x & x^2 & 1\end{pmatrix} = (1 - x^3)^2.
Solution Outline:
Use row/col operations and factorization recognizing 1x31-x^3.


🎓 D. Exam Strategy & Tips

  • Always state the property used (e.g., “by property ...”).

  • For inverses, use adjoint and determinant formula.

  • For row/column operations, indicate each step clearly.

  • Triangle area questions gain full marks with correct formula and application.


#Tags:

#Class12Maths, #Determinants, #NCERTSolutions, #MatrixDeterminant, #CBSEPYQs, #Adjoint, #InverseMatrix, #MathsChapter4, #TriangleArea


Comments

Popular posts from this blog

Rise of Nationalism in Europe – Class 10 CBSE Detailed Notes | Chapter 1 History

Nationalism in India – Class 10 CBSE History Notes | Chapter 2 | Key Events, Movements & Leaders

Resources and Development – Class 10 Geography Notes, Concepts, and Map Work