Class 12 Maths Chapter 3: Matrices – Concepts, NCERT Solutions & CBSE PYQs Explained

 Here’s the comprehensive guide for Chapter 3: Matrices (Class 12 CBSE Maths):


🧠 A. Key Concepts & Properties

  1. Matrix Definition & Order
    A matrix is a rectangular array [aij][a_{ij}] of order m×nm \times n containing real numbers/functions.

  2. Types of Matrices :

    • Row, Column, Square, Rectangular

    • Zero, Identity, Diagonal, Scalar

    • Symmetric (AT=AA^T = A), Skew-symmetric (AT=AA^T = -A), Transpose (ATA^T)

  3. Matrix Operations:

    • Sum/Subtraction: Element-wise, requires same order 

    • Scalar Multiplication

    • Matrix Multiplication: Product defined if columns of A = rows of B; not commutative .

  4. Elementary Row/Column Operations & Inverse:

    • Inverse (A1A^{-1}) exists only for square matrices; findable via elementary operations 

  5. Properties of Transpose:

    • (AT)T=A(A^T)^T = A, (AB)T=BTAT(AB)^T = B^T A^T 

  6. Symmetric/Skew Decomposition:

    • Any square AA can be written as S+KS + K, where S=(A+AT)/2S = (A + A^T)/2 and K=(AAT)/2K = (A - A^T)/2 


📘 B. NCERT Exercise Breakdown & Solutions

(NCERT Chapter 3 exercises generally include)

  • Finding transpose, checking equality

  • Sum, scalar multiplication, and product of matrices

  • Finding unknown elements/matrices from equations

  • Determining inverse using elementary operations

  • Symmetric/skew decomposition


📝 C. CBSE Previous Year Questions with Model Solutions


✅ PYQ 2019 (Delhi):

Q. If 3AB=(5011)3A - B = \begin{pmatrix}5&0\\1&1\end{pmatrix} and B=(4325)B = \begin{pmatrix}4&3\\2&5\end{pmatrix}, find A. 
Ans:


✅ PYQ 2018 (CBSE Syllabus):

Q. If AA is skew-symmetric, find a and b for A=(0a3201b10)A = \begin{pmatrix}0 & a & -3\\2&0&-1\\b&1&0\end{pmatrix}.
Ans:
Skew-symmetric ⇒ AT=AA^T = -A. Equating gives a+2=0a=2a+2=0 \Rightarrow a=-2; b=1b=-1.


✅ PYQ 2016 (All India):

Q. Given A=P+QA = P + Q, where P is symmetric and Q is skew-symmetric, find P if A=(3579)A = \begin{pmatrix}3&5\\7&9\end{pmatrix}.
Ans:


✅ PYQ 2023 (MCQ style):

Q. If A=[aij]A=[a_{ij}] skew-symmetric, then A=0|A| = 0 for odd order matrices.
Ans: True — determinant of odd-order skew-symmetric is always zero .


🔍 D. Exam Strategy & Tips

  • Use step-by-step matrix equations clearly.

  • Label and verify dimensions before operations.

  • For inverse, augment with identity and apply row reductions.

  • For symmetric/skew decomposition, always compute (A±AT)/2(A ± A^T)/2.


#Tags:

#Class12Maths, #Matrices, #MatrixOperations, #NCERTSolutions, #CBSEPYQs, #InvertibleMatrix, #SymmetricMatrix, #SkewSymmet

Comments

Popular posts from this blog

Rise of Nationalism in Europe – Class 10 CBSE Detailed Notes | Chapter 1 History

Nationalism in India – Class 10 CBSE History Notes | Chapter 2 | Key Events, Movements & Leaders

Resources and Development – Class 10 Geography Notes, Concepts, and Map Work