Class 10 Maths Chapter 7 – Coordinate Geometry | NCERT Solutions, Formulas & CBSE Board Questions (2025–26)

 Class 10 CBSE Maths – Chapter 7: Coordinate Geometry


🔹 Key Concepts and Formulas

✅ Coordinate Plane

  • A plane with two perpendicular lines (axes): x-axis (horizontal) and y-axis (vertical)

  • The point of intersection is called the origin (0, 0)

  • Coordinates are written as (x, y)

✅ Quadrants

  • I Quadrant: (+x, +y)

  • II Quadrant: (–x, +y)

  • III Quadrant: (–x, –y)

  • IV Quadrant: (+x, –y)

✅ Distance Formula

To find distance between two points A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2):

AB=(x2x1)2+(y2y1)2AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

✅ Section Formula

To find coordinates of a point P which divides the line segment AB in the ratio m:nm:n:

P=(mx2+nx1m+n,my2+ny1m+n)P = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right)

✅ Midpoint Formula

Special case of section formula when m = n:

Midpoint=(x1+x22,y1+y22)\text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

✅ Area of a Triangle (Coordinate Geometry)

Given 3 points A(x1,y1),B(x2,y2),C(x3,y3)A(x_1, y_1), B(x_2, y_2), C(x_3, y_3):

Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|

📘 NCERT Solved Examples (Highlights)

Example 1:

Find the distance between points (3, 4) and (7, 1):

AB=(73)2+(14)2=16+9=25=5AB = \sqrt{(7 - 3)^2 + (1 - 4)^2} = \sqrt{16 + 9} = \sqrt{25} = 5

Example 2:

Find the coordinates of the point which divides the line joining (2, 3) and (4, 5) in the ratio 1:2:

P=(1×4+2×21+2,1×5+2×31+2)=(83,113)P = \left( \frac{1 \times 4 + 2 \times 2}{1 + 2}, \frac{1 \times 5 + 2 \times 3}{1 + 2} \right) = (\frac{8}{3}, \frac{11}{3})

📄 Exercise 7.1 – Distance Formula

Q1. Find the distance between points (2, 3) and (4, 1):

=(42)2+(13)2=4+4=8=22= \sqrt{(4 - 2)^2 + (1 - 3)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}

Q2. Find the distance between (0, 0) and (36, 15):

=362+152=1296+225=1521=39= \sqrt{36^2 + 15^2} = \sqrt{1296 + 225} = \sqrt{1521} = 39

📄 Exercise 7.2 – Section Formula

Q1. Find coordinates of point dividing the segment joining (1, -2) and (3, 6) in the ratio 2:1:

P=(2×3+1×13,2×6+1×(2)3)=(73,103)P = \left( \frac{2 \times 3 + 1 \times 1}{3}, \frac{2 \times 6 + 1 \times (-2)}{3} \right) = \left( \frac{7}{3}, \frac{10}{3} \right)

Q2. Find coordinates of the midpoint of line joining (4, -1) and (-2, 3):

=(4+(2)2,1+32)=(1,1)= \left( \frac{4 + (-2)}{2}, \frac{-1 + 3}{2} \right) = (1, 1)

📄 Exercise 7.3 – Area of Triangle

Q1. Find the area of triangle with vertices (2, 3), (4, 5), (6, 7):

=122(57)+4(73)+6(35)=124+1612=12×0=0= \frac{1}{2} |2(5 - 7) + 4(7 - 3) + 6(3 - 5)| = \frac{1}{2} |-4 + 16 -12| = \frac{1}{2} \times 0 = 0

⇒ Points are collinear

Q2. Find the area of triangle with vertices A(1, 1), B(4, 4), C(1, 6):

=121(46)+4(61)+1(14)=122+203=12×15=7.5= \frac{1}{2} |1(4 - 6) + 4(6 - 1) + 1(1 - 4)| = \frac{1}{2} |-2 + 20 - 3| = \frac{1}{2} \times 15 = 7.5

🔁 Summary and Revision Notes

  • Distance Formula helps find the length of a segment between two points

  • Section Formula finds coordinates dividing a segment in a ratio

  • Midpoint is a special case of section formula

  • Area Formula useful for checking collinearity of points (area = 0 ⇒ collinear)


📘 CBSE Previous Year Questions – Coordinate Geometry

✅ 1-Mark

(2020) What is the distance between point A(3, -4) and origin?

=32+(4)2=9+16=25=5= \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5

✅ 2-Mark

(2021) Find the coordinates of the point which divides the line joining A(1, 2) and B(3, 4) in the ratio 1:1.

Midpoint=(1+32,2+42)=(2,3)Midpoint = \left( \frac{1+3}{2}, \frac{2+4}{2} \right) = (2, 3)

✅ 3-Mark

(2018) Find the area of the triangle with vertices (2, 3), (4, -1), (-1, 2):

=122(12)+4(23)+(1)(3+1)=12644=12×14=7= \frac{1}{2} |2(-1 - 2) + 4(2 - 3) + (-1)(3 + 1)| = \frac{1}{2} |-6 -4 -4| = \frac{1}{2} \times 14 = 7


Comments

Popular posts from this blog

Rise of Nationalism in Europe – Class 10 CBSE Detailed Notes | Chapter 1 History

Nationalism in India – Class 10 CBSE History Notes | Chapter 2 | Key Events, Movements & Leaders

Resources and Development – Class 10 Geography Notes, Concepts, and Map Work